
Zephyr: A Cost-Effective, Zero-Knowledge Light Client for
Enhanced Blockchain Interoperability

Xiangan He
hexh@bc.edu

Boston College
MA, USA

ABSTRACT
Blockchains are siloed by nature. A longtime limitation
of blockchain technology is that individual cryptocurrencies
are bound to their own chains. Users and applications need
to transfer arbitrary data and funds across blockchains. At
its peak in 2021, cross-chain bridges custody over $20B in
various cryptocurrencies, serving users’ needs to engage in
DeFi, gaming, etc. Plagued by a lack of ability to do so
in a decentralized way, applications force its users to rely
on centralized exchanges to achieve cross-blockchain inter-
operability. User flow thus becomes significantly more com-
plicated, and developers are prevented from defining and
building applications that are uniquely enabled by on-chain
bridges. Furthermore due to hacks of over $2B, a loss of
faith in natively on-chain solutions force users to look to
off-chain solutions like Coinbase.

This paper addresses the issue of “cross-blockchain inter-
operability” by presenting Zephyr, a trustless and efficient
Ethereum light client built on top of zero-knowledge proofs
(ZK proofs). The light client is an essential component for
achieving the implementation of a bridge that guarantees
strong security without extra trust assumptions on central-
ized middlemen, while having significantly reduced on-chain
verification cost[11]. The key contribution of this work is to
present metrics for evaluating how the zero-knowledge light
client enables blockchain bridge performance above that of
what was previously possible. Performance evaluation un-
der different implementations is made possible with the help
of tools created from existing libraries.

In particular, we use tools like circom and snarkJS[14]
to study the tradeoffs between latency (of completing the
cross-blockchain message passing) and economical efficiency.
In our preliminary study, we demonstrated that implement-
ing Zephyr using the Plonky2 and Groth16 proof systems
is 320x cheaper in computational cost than previous light
client protocols (i.e. Bitcoin’s SPV[12]) with moderate per-
formance loss (roughly 2x less throughput)[1]. As a future
work, we plan to construct and evaluate performance of ad-
ditional off-chain components to the bridge protocol, as well
as investigating the robustness of such a protocol.

1. INTRODUCTION
Previously state-of-the-art solutions which ushered a dawn

of cross-chain native applications have three primary disad-

Copyright is held by author/owner(s).

vantages: (1) they’re centralized, which is counterproductive
to creating a decentralized platform, (2) they’re prone to
getting hacked [2], and (3) they deal only with tokens, not
arbitrary data. For example, in some (previously-hacked)
bridges [3], messages are transferred when at least a quo-
rum of 13 of 19 validators agree on the state and execution
of the blockchain the message originates from. This means
that users and applications must trust that a majority of
the validators do not collude to forge or censor them.

Bridges opting for more decentralization have adopted
’optimistic’ security models. Rather than ‘pessimistically’
verifying each message natively, such bridges rely on local
verification by participants, with the opportunity to flag it
in the system. This tradeoff allows these bridges to be-
come computationally lighter, but makes them vulnerable
in security to the failure of message verification by partici-
pants. Bogus messages are only caught when they’re chal-
lenged, and as a result a notably popular implementation
was hacked for $200M USD [4].

The alternative to trusting the validators’ view of the
chain state is verifying the source blockchain on the tar-
get blockchain directly. Doing so would essentially embed
a blockchain in another, which is economically infeasible.
Each opcode executed on chain costs money; this cost, which
is measured in gas, would be exorbitently high due to com-
putational intensity. An approximation is verifying only the
consensus of the source chain. In our example implementa-
tion, the source chain becomes Ethereum which boils trusts
assumptions down to the economic security of the chain.

2. A ZERO-KNOWLEDGE LIGHT CLIENT
A program that performs the alternative verification de-

scribed above is called a light client. Running a light client
directly on-chain (as a smart contract) is still infeasible due
to the high cost of verification [13], but it’s possible to use
zero-knowledge proofs to perform succinct, verifiable com-
putation [5][6]. By performing the expensive verification
off-chain, we would then only need to verify the correctness
of the light client’s execution on-chain. Originally costing
roughly 64 million gas for one block header, the expense of
the computation is reduced to less than 300,000. The fol-
lowing diagram illustrates the lifecycle of a message being
passed and verified in this way.

First, the user sends a message m. On-chain, m is hashed
& inserted into a merkle tree, producing a new accumulated
root M . Next, the Zephyr light client prover generates zero-
knowledge proofs that the accumulator root M is included
within a final block’s state root S. Proving inclusion of root

Figure 1: Message lifecycle

M within a finalized block could be performed in the same
circuit that implements the light client, so block finality and
message root checks can be verified in a single transaction.
Then, some Relayer submits & verifies the zero-knowledge
proof for rootM on the destination chain. Verified rootM is
stored on-chain. Alongside that, some off-chain infrastruc-
ture observes messages such as m being sent, re-constructs
the state of the Merkle tree, and generates (and serves) in-
clusion proofs that individual messages are included within
verified roots such as M . Lastly, user submits & verifies on-
chain the Merkle inclusion proof of single message m within
root M , and executes the effects of the message.

3. CHOICE OF A PROOF SYSTEM
There are a variety of proof systems at-hand to choose

from to build the light client prover with, but it’s important
to choose the proof system that satisfies the tradeoffs most
appropriate for this system. We consider a few of these
critical tradeoffs:

• Proof generation latency: is critical to the overall
usability and success of a cross-chain messaging proto-
col. Users are ultimately highly sensitive to the latency
of moving messages across different ecosystems. This
is particularly relevant for natively cross-chain appli-
cations, which rely heavily on rapid state access.

• Setup type: setups for proof systems are often cat-
egorized into three broad buckets: trusted, universal,
and transparent. We’d like to minimize the need for
trusted setups.

• Proof size: the size and number of the artifact(s) that
are relayed to the target chain(s) can vary based on
proof systems (e.g. choice of polynomial commitment
scheme).

• Verification cost: will depend on what precompiles
are needed to verify the ZKPs. We’d like to choose
a proof system that can operate with a minimal and
widely available set of precompiles.

• Recursion: support for recursion is useful on a few
different levels: (1) batch messaging, (2) smaller cir-
cuit sizes, and (3) enable proof aggregation.

• Verification time: the time to verify a given proof
should be small in absolute terms and in relation to
the size of the proving circuit.

Industry standard light clients (e.g. Helios) currently use
the Plonky2 proof system. To reduce the size of the resulting
proof (and thus make it economically feasible to verify on the
target chain), we can wrap the Plonky2 proof in a Groth16
proof, which is then submitted to a Solidity contract that
verifies it [1]. One cannot simply use Groth16 to do the
whole thing because the proof would be too large. The
Groth16 proof would attest to the fact that if the Plonky2
proof were submitted to a verifier, it would be valid. Rather
than ferrying individual messages across chains, this design
would bundle messages into a single 32-byte Merkle root
which can contain a large number of individual messages.
This way bridges can unlock much lower gas costs per mes-
sage.

In work conducted parallel to the writing of this paper,
Tiancheng Xie et al. use a cryptographic mechanism called
Virgo and improve upon it to create deVirgo[11]; results
show that computational performance is slightly worse when
we adopt our alternative approach. Wrapping a Plonky2
proof in a Groth16 proof and using inclusion proofs use
only 20k gas more. Proof generation speeds for the Plonky2
prover implemented in circom (30 seconds) are 13 times
faster than that of Virgo’s (400 seconds). Yet, we still lag
moderately behind that of deVirgo’s (2 times slower; 30 sec-
onds versus 13). Additionally, the following table demon-
strates early benchmarks on gas costs of and time required
for proof verification under a few different cryptosystems.

GROTH16 FFLONK PLONK
Gas Costs 230K 203K 300K

Proving Time 1.4s 10s 6.6s

Table 1: Proving times determined with a SHA-256
Prover

Comparing FFLONK with Groth16 and Plonk in the above
table, for example, it can verify proofs on chain 27K gas
cheaper that Groth16 and 30 percent cheaper than regular
Plonk; the drawback is that proof generation speed is about
10 times slower than Groth16 [9]. Given these tradeoffs, pre-
liminary results shows promise for iterative improvements of
Zephyr: it is possible to explore different proving methods
that combine faster message proving times and low gas costs.

4. COST OF MESSAGES AND FINALITY
Calculating the root produced by the merkle inclusion

proof costs 9,942 gas. In addition to loading a stored root

and performing an equality check, the total for verifying a
proof is under 13k gas per message. In this experiment,
each proof was a total 1024 bytes, and at 16 gas per byte
of nonzero calldata, it turns out that 16,384 gas is required
to pass the proof via calldata. This brings the final total to
around 30k gas for passing & evaluating a merkle inclusion
proof. The total gas cost, including the Groth16 verification,
comes out to be around 240k.[1]

With regards to finality guarantees, we are interested in
messages that originate from finalized blocks. On Ethereum,
where the light client prototype was implemented, validators
take turns in slots (every 12 seconds) to propose blocks, and
every 32 slots, a checkpoint is taken. These 32 slot periods
are called epochs. A block is justified if it’s in the most
recently completed epoch. A block is finalized if it’s behind
a justified epoch. This means in the best case, a block will be
finalized in 64 slots (13 minutes). Once a block is finalized,
we can rely on its contents and therefore consider messages
contained within this block to be valid — these are the same
semantics bridges today abide by [15]. Thus there are two
steps required for message passing:

• Check finality of blocks

• Prove that a message is contained in a final block

Similar to the Helios light client, we will start with a trusted
block, called the weak subjectivity checkpoint. This check-
point is stored as a block hash, and is periodically updated
(whenever a new final block is verified by the light client,
it becomes the checkpoint). The checkpoint is stored on-
chain. The checkpoint block’s header includes the compo-
sition of the sync committee, a set of 512 validators that
sign every block within a 256 epoch period (27 hours), after
which a new sync committee is elected. The only bookkeep-
ing needed for tracking the validity of a block is tracking
this sync committee. We implement a BLS signature veri-
fier circuit in Plonky2 to allow verifying the sync committee
signatures. Assuming we have the most recent sync com-
mittee (whose public keys are provided as private input to
the circuit), the BLS verification is sufficient to determine
if a block is valid (but not necessarily final). The members
of the sync committee are rewarded for signing valid block
headers but are not currently slashed for invalid or malicious
actions. We implement this model for this prototype, and
plan to later evaluate the switch over to full validator set
tracking.

5. FUTURE WORKS & CONSIDERATIONS
For future works, we intend to analyze the robustness of

the finality guarantees. The existing light client design relies
on the sync committee’s signatures, and thus far we’ve as-
sumed that those are always valid with reasonable uptime.
This, however, is not always the case. Light clients grab
sync committee attestations and apply them to their local
view of the chain. Unfortunately, there are no protocol con-
straints on what this signature can be. This allows sync
committee members to coordinate to cause some degenerate
scenarios:

• Zephyr may receive many semantically invalid attesta-
tions, with valid signatures.

• Zephyr may receive a valid proof, with semantically
invalid data.

• Zephyr may receive a valid proof, but have the data
withheld.

Sync committee penalties are also insufficient (capped at
0.1 ETH per validator for the 27 hour period). It is cheap
(around $82,000 or 0.3% of stake) for a committee to not
produce any valid attestation during a period. Malicious
committees can ensure that only invalid attestations are
available.

6. REFERENCES
[1] Tenderly. “Ethereum Development Platform.”

Tenderly, https://tenderly.co/.

[2] Kharif, Olga. “Crypto Bridge Hacks Have Stolen $1
Billion in Little over a Year.” Bloomberg.com,
Bloomberg, 30 Mar. 2022,
https://www.bloomberg.com/news/articles/2022-03-
30/crypto-bridge-hacks-reach-over-1-billion-in-little-
over-a-year.

[3] “Wormhole Development Book.” Introduction -
Wormhole Development Book,
https://book.wormhole.com/.

[4] “Explained: The Nomad Hack (August 2022).”
Halborn,
https://www.halborn.com/blog/post/explained-the-
nomad-hack-august-2022.

[5] “Building Helios: Fully Trustless Access to
Ethereum.” a16z Crypto, 8 Nov. 2022,
https://a16zcrypto.com/building-helios-ethereum-
light-client/.

[6] Wang, Wenqi, et al. “Efficient Cross-Chain
Transaction Processing on Blockchains.” MDPI,
Multidisciplinary Digital Publishing Institute, 27 Apr.
2022, https://www.mdpi.com/2076-3417/12/9/4434.

[7] Stone, Drew. “Trustless, Privacy-Preserving
Blockchain Bridges.” Arxiv, 9 Feb. 2021,
https://arxiv.org/pdf/2102.04660.pdf.

[8] McCorry, Patrick, et al. SoK: Validating Bridges as a
Scaling Solution for Blockchains - IACR.
https://eprint.iacr.org/2021/1589.pdf.

[9] Walton-Pocock, Thomas. “Plonk Benchmarks − 2.5x
Faster than Groth16 on MiMC.” Medium, Aztec
Network, 29 Jan. 2020, https://medium.com/aztec-
protocol/plonk-benchmarks-2-5x-faster-than-groth16-
on-mimc-9e1009f96dfe.

[10] Wood, Gavin. Ethereum: A Secure Decentralized
Generalized Transaction Ledger.
https://ethereum.github.io/yellowpaper/paper.pdf.

[11] Tiancheng Xie, et al. 2022. ”In Proceedings of ACM
SIGSAC Conference on Computer and
Communications Security (CCS ’22), November 7–11,
2022”.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized Business Review (2008).

[13] ETH-NEAR Rainbow Bridge – NEAR Protocol.
https://near.org/blog/eth-near-rainbow-bridge/
(2022).

[14] Circom Documentation. https://docs.circom.io/
(2023).

[15] Wormhole Documentation.
https://docs.wormhole.com/ (2023).

