
yAcademy Ohm IncurDebt review
Review Resources:
Documentation was provided

Residents:

Peep (xiangan.eth)
NibblerExpress

Table of Contents

yAcademy Ohm IncurDebt review
Table of Contents
Review Summary
Scope
Code Evaluation Matrix
Findings Explanation
Critical Findings

1. Critical - Changes to index causes contract to have insufficient funds (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

High Findings
1. High - Balance integer overflow revert at large balances (Peep)

Proof of concept
Impact
Recommendation
Developer Response

Medium Findings
1. Medium - Typo in amount transferred from user (Peep)

Proof of concept
Impact
Recommendation
Developer Response

2. Medium - Overflow revert on depositing an amount greater than debt amount (Peep)
Proof of concept
Impact
Recommendation
Developer Response

Low Findings
1. Low - No check for _amount > type(uint128).max (NibblerExpress)

Proof of concept
Impact
Recommendation
Developer Response

2. Low - Fee on transfer tokens can get stuck (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

3. Low - Reentrant token can take tokens returned to user by Balancer (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

Gas Savings Findings
1. Gas Savings - Duplicative checks of isBorrower (NibblerExpress)

Proof of concept
Impact
Recommendation
Developer Response

2. Gas Savings - Rely on checked math (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

3. Gas Savings - Don't check isBorrower or isLPBorrower on withdraw (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

https://docs.google.com/document/d/1iZw6-tI6syalIJFiDPFqLQiXgevGm8cYKA2vxzNbwOk/edit

Informational Findings
1. SPDX license identifiers not provided in source files of IncurDebt.sol and other similar library contracts (IStrategy.sol, etc.) (Peep)

Proof of concept
Impact
Recommendation
Developer Response

2. Addresses yet to be hardcoded (no zero checks) on constructor (Peep)
Proof of concept
Impact
Recommendation
Developer Response

3. Informational - Typos (Peep, NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

4. No pragma declaration on ICurvePoolFactory.sol (Peep)
Proof of concept
Impact
Recommendation
Developer Response

5. Informational - Strategies must check _lpToken (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

6. Informational - Comments don't match code (NibblerExpress, Peep)
Proof of concept
Impact
Recommendation
Developer Response

7. Informational - Unwrap only required amount (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

8. Informational - Replace magic numbers (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

9. Informational - Confusing use of slippage (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

10. Informational - No sweep function (NibblerExpress)
Proof of concept
Impact
Recommendation
Developer Response

Final remarks
Appendix and FAQ

tags: Review yAcademy

Review Summary
Ohm IncurDebt

The goal of the IncurDebt project is to allow other whitelisted partners to borrow ohm against their gOHM to be used to provide liquidity for
tokens to be paired with OHM. Since OHM is a rebasing token when staked, there are financial disadvantages to providing liquidity for OHM
since you are not capturing the supply inflation through staking. By allowing partners to borrow OHM against gOHM with 0 interest to LP, it
incentivises them to hold gOHM in their treasury at the same time as increasing liquidity of their token-OHM pair.

The IncurDebt branch of the Olympus-contracts Repo was reviewed over 14 days. 2 days was used to create a report of the findings. The
contracts were reviewed from May 30 to June 13. The code was reviewed by 2 resident for a total of 57 man hours (Peep 35 hours, and
NibblerExpress 22 hours). The repository was under active development during the review, but the review was limited to one specific commit.

Scope
Code Repo
Commit

https://github.com/OlympusDAO/olympus-contracts/pull/302
https://github.com/OlympusDAO/olympus-contracts/pull/302/commits/a936c45564692428e766727f0cae4035c02fe162
https://github.com/OlympusDAO/olympus-contracts/tree/IncurDebt
https://github.com/OlympusDAO/olympus-contracts/pull/302/commits/a936c45564692428e766727f0cae4035c02fe162

Category Mark Description

Access Control Good
Access controls are applied where needed. Ownable is appropriately used to limit function calls to
respective permissions, and view functions are made public for liquidation purposes.

Mathematics Good

Solidity ^0.8.10 is used, which provides overflow and underflow protect. Unchecked code was checked
in this audit to yield no anomalies. No low-level bitwise operations are performed. There was no
unusually complex math, except perhaps some of the calculations with current interest rates based on
market growth factor.

Complexity Medium
The multiple user-accessible functions and wrappings and unwrappings of OHM creates complexity in
the codebase.

Libraries Fair
SafeERC20 is used as a basic library for ERC20 transfers, but OlympusAccessControlledV2 is also used as
a Olympus admin control library. Besides for that, simple interfaces are used. Fewer and simpler
external dependencies is always a plus for security.

Decentralization Fair
Currently, OlympusAccessControlledV2 is being used as the permissions modifier and governance
controller.

Code stability Average
Changes were reviewed at a specific commit and the scope was not expanded after the review was
started. However, development was ongoing when the review was performed so the code was not fully
frozen, which means deployed code may vary from what was reviewed.

Documentation Good
Comments existed in many places in IncurDebt.sol, and mostly clarified what the code did. Strategy
contracts lacked detailed comments. Some documentation had to be added to distinguish between
functions with duplicate names, as well as fixing some typos.

Monitoring Good Events were added to all important functions that modified state variables.

Testing and
verification

Good All tests were passing after a small fix to a typo, and test coverage was expansive.

The commit reviewed was a936c45564692428e766727f0cae4035c02fe162. The review covered contracts modified by the pull request at this
specific commit and focused on the contracts directory.

After the findings were presented to the Ohm team, fixes were made and included up to commit
a936c45564692428e766727f0cae4035c02fe162. Fixes were reviewed to confirm whether they remedied the original finding. A security review
was performed on the revised code (e.g. to determine whether new vulnerabilities were introduced by the fixes) and found no additional
issues.

The review is a code review to identify potential vulnerabilities in the code. The reviewers did not investigate security practices or operational
security and assumed that privileged accounts could be trusted. The reviewers did not evaluate the security of the code relative to a standard
or specification. The review may not have identified all potential attack vectors or areas of vulnerability.

yAcademy and the residents make no warranties regarding the security of the code and do not warrant that the code is free from defects.
yAcademy and the residents do not represent nor imply to third party users that the code has been audited nor that the code is free from
defects. By deploying or using the code, Olympus DAO and users of the contracts agree to use the code at their own risk.

Code Evaluation Matrix

Findings Explanation
Findings are broken down into sections by their respective impact:

Critical, High, Medium, Low impact

These are findings that range from attacks that may cause loss of funds, impact control/ownership of the contracts, or cause any
unintended consequences/actions that are outside the scope of the requirements

Gas savings

Findings that can improve the gas efficiency of the contracts
Informational

Findings including recommendations and best practices

Critical Findings

1. Critical - Changes to index causes contract to have insufficient funds
(NibblerExpress)

As background, the staking contract provides users with the ability to stake/unstake to convert between OHM and sOHM and to wrap/unwrap
to convert between sOHM and gOHM. sOHM benefits from rebasing that increases the sOHM balance of users based on profits. The staking
contract uses a conversion rate called the index (exposed through the gOHM balanceTo / balanceFrom functions) to change between gOHM
and sOHM. The index is increased with rebasing. Importantly, OHM does not benefit from rebasing.

https://github.com/OlympusDAO/olympus-contracts/pull/302/commits/a936c45564692428e766727f0cae4035c02fe162
https://github.com/OlympusDAO/olympus-contracts/pull/320/files

IncurDebt.sol allows users to deposit and withdraw gOHM, but it lends money to LPs or individual users in OHM. The contract does not charge
interest or otherwise profit from lending OHM. The contract has liabilities denominated in gOHM and assets denominated in OHM. When
rebasing occurs and the index changes (and OHM loans are outstanding), the liabilities increase relative to assets, and the contract is
rendered insolvent. It will not have sufficient tokens to pay back the gOHM it owes.

Example 1: A user deposits 10 gOHM when the index is 100. The contract unwraps all of the gOHM (IncurDebt.sol, L467), and the user gets
1000 sOHM. The user borrows 200 OHM and leaves 800 sOHM remaining in the contract. The index increases to 200. The contract now has
1600 sOHM. The user debt (200 OHM) is now equivalent to 1 gOHM. If the user wants to withdraw the remaining 9 gOHM, the contract must
wrap 1800 sOHM. The contract only has 1600 sOHM, so it cannot pay back the user in full.

Example 2: A user deposits 2 gOHM when the index is 100. The user borrows 200 OHM. The index increases to 200. The user debt is now
equivalent to 1 gOHM. The user wants to withdraw the remaining 1 gOHM. The contract has no gOHM to give back to the user.

Proof of concept

In IncurDebt.sol, L459-L460 and L463-L470, borrower debt in OHM is added with first index:

In L488-L491 and L496-L498, debt is paid using gOHM and the index can be different from the first:

In L429 and L434-L435, debt is paid with OHM without accounting for the index:

Impact

Critical. The contract will not be able to repay funds nominally owed to users.

Recommendation

Borrower.debt should be denominated in gOHM or otherwise take account of changes in the index value.

Developer Response

When you unwrap gOHM to sOHM, even though index increases, the amount of sOHM increases too along with it. So holding sOHM is
equivalent of holding gOHM. Developer acknowledged.

High Findings

1. High - Balance integer overflow revert at large balances (Peep)

In the following two examples, when _ohmAmount input is greater than type(uint128).max in these user-accessible functions, a revert will
occur.

 borrower.debt += uint128(_ohmAmount);
 totalOutstandingGlobalDebt += _ohmAmount;

 uint256 totalDebtInGOHM = IgOHM(gOHM).balanceTo(borrower.debt);

 if (totalDebtInGOHM > borrower.unwrappedGOHM) {
 uint128 amountToUnwrap = borrower.collateralInGOHM - borrower.unwrappedGOHM;
 borrower.unwrappedGOHM += amountToUnwrap;
 IStaking(staking).unwrap(address(this), amountToUnwrap);
 }

 totalOutstandingGlobalDebt -= debt;
 borrower.debt = 0;
 uint256 sOHMToWrap = IgOHM(gOHM).balanceFrom(borrower.unwrappedGOHM) - debt;
 borrower.unwrappedGOHM = 0;

 IStaking(staking).wrap(address(this), sOHMToWrap);
 collateralRemaining = borrower.collateralInGOHM - IgOHM(gOHM).balanceTo(debt);

function repayDebtWithOHM(uint256 _ohmAmount) external override isBorrower(msg.sender) {

 totalOutstandingGlobalDebt -= _ohmAmount;
 borrower.debt -= uint128(_ohmAmount);

Proof of concept

When _ohmAmount is greater than type(uint128).max, L249-251 and L435-437 of IncurDebt.sol.

Impact

The uint128 typecasting should work for updating borrower.debt, but safeTransferFrom is called using the uint256 value. This is unlikely to
happen, but the contract will steal a bunch of the user's money if it does.

Thankfully, Solidity 0.8.10 and above have reverts for integer underflow and overflow, so this will most likely only result in a DoS on deposits
of _ohmAmount greater than type(uint128).max.

Recommendation

An easy solution can be to define _ohmAmount in borrower.debt -= uint128(_ohmAmount); as a uint256, the same as the input. Gas costs
will be impacted minimally (if at all).

Developer Response

Acknowledged and regarded as informational because in order for max to hit they would have to deposit an absurdly large amount of gOHM.

Medium Findings

1. Medium - Typo in amount transferred from user (Peep)

A typo in Uniswap.sol causes the code to transfer amountBDesired rather than amountADesired .

Proof of concept

L77-L78 say,

They should say,

Impact

Medium. The contract may transfer too many funds from the user and be unable to return them.

Recommendation

Replace amountBDesired with amountADesired as indicated above.

 function deposit(uint256 _amount) external override isBorrower(msg.sender) {
 borrowers[msg.sender].collateralInGOHM += uint128(_amount);

 IERC20(gOHM).safeTransferFrom(msg.sender, address(this), _amount);

 emit BorrowerDeposit(msg.sender, _amount);
 }

 function repayDebtWithOHM(uint256 _ohmAmount) external override isBorrower(msg.sender) {
 Borrower storage borrower = borrowers[msg.sender];

 if (borrower.debt == 0) revert IncurDebt_BorrowerHasNoOutstandingDebt(msg.sender);

 totalOutstandingGlobalDebt -= _ohmAmount;
 borrower.debt -= uint128(_ohmAmount);

 IERC20(OHM).safeTransferFrom(msg.sender, address(this), _ohmAmount);
 ITreasury(treasury).repayDebtWithOHM(_ohmAmount);

 emit DebtPaidWithOHM(msg.sender, _ohmAmount, borrower.debt, totalOutstandingGlobalDebt);

 }

 IERC20(tokenA).safeTransferFrom(_user, address(this), amountBDesired);
 IERC20(tokenA).approve(address(router), amountBDesired);

 IERC20(tokenA).safeTransferFrom(_user, address(this), amountADesired);
 IERC20(tokenA).approve(address(router), amountADesired);

Developer Response

Fixed

2. Medium - Overflow revert on depositing an amount greater than debt amount
(Peep)

In the following example, when _ohmAmount input is greater than borrower.debt in the user accessible repayDebtWithOHM() ,
borrower.debt will overflow if uint128(_ohmAmount) > borrower.debt.

Proof of concept

When _ohmAmount is greater than borrower.debt , as seen in L435-437 of IncurDebt.sol,.

The case with global outstanding debt is unlikely to happen (but can still happen if, for example, there is only one borrower and the
totalOutstandingGlobalDebt == borrower.debt).

Impact

Borrower debt will overflow and cause the user a DoS due to overflowed debt.

Recommendation

Implement a revert error where a user cannot return more than their debt amount.

Developer Response

Intended behavior. user should not be able to repay more than they have in debt

Low Findings

1. Low - No check for _amount > type(uint128).max (NibblerExpress)

IncurDebt.sol has functions that receive uint256 values and typecasts them to uint128 for some operations but not others.

Proof of concept

In L249-L251 and L389-L390 of IncurDebt.sol, _amount is typecast to uint128 for updating the borrower's collateral but not for transferring
funds.

Impact

Low. It is very unlikely a user will have more than type(uint128).max gOHM, but loss of funds would be possible if that happened. Withdraw
has additional checks that should prevent users from transferring out more than their collateral.

 function repayDebtWithOHM(uint256 _ohmAmount) external override isBorrower(msg.sender) {
 Borrower storage borrower = borrowers[msg.sender];

 if (borrower.debt == 0) revert IncurDebt_BorrowerHasNoOutstandingDebt(msg.sender);

 totalOutstandingGlobalDebt -= _ohmAmount;
 borrower.debt -= uint128(_ohmAmount);

 IERC20(OHM).safeTransferFrom(msg.sender, address(this), _ohmAmount);
 ITreasury(treasury).repayDebtWithOHM(_ohmAmount);

 emit DebtPaidWithOHM(msg.sender, _ohmAmount, borrower.debt, totalOutstandingGlobalDebt);

 }

 borrowers[msg.sender].collateralInGOHM += uint128(_amount);
 IERC20(gOHM).safeTransferFrom(msg.sender, address(this), _amount);

 borrower.collateralInGOHM -= uint128(_amount);
 IERC20(gOHM).transfer(msg.sender, _amount);

Recommendation

Typecast _amount to uint128 for all operations or revert when _amount > type(uint128).max .

Developer Response

Acknowledged, again like the comment before: not a concern since uint128 is quite big. Should revert if user mistakenly inputs too big
number.

2. Low - Fee on transfer tokens can get stuck (NibblerExpress)

The strategies allows users to add an arbitrary token to an LP contract. A user may deposit a fee on transfer token. The deposit may succeed if
the amount received by the LP contract is more than the minimum amount. When removing the liquidity, the LP contract will report that it
returned more tokens than it did. The strategy contract will attempt to return those tokens to the user and revert. The tokens will be stuck in
the LP contract.

Proof of concept

Uniswap strategy adds liquidity here.

Liquidity is removed from the LP contract and returned to the user at L148-L166 of Uniswap.Sol. If the LP contract reports the wrong amount
returned due to a fee on transfer, the transfer to the user will fail.

The logic in Curve.sol functions similarly.

Impact

Low. It may not be possible to withdraw an LP position without sending extra of the fee on transfer tokens to the contract.

Recommendation

Send the smaller of the balance of tokens in the contract and the amount reported as returned by the LP contract (e.g., amountA or
amountB).

Developer Response

Fixed

3. Low - Reentrant token can take tokens returned to user by Balancer
(NibblerExpress)

The Balancer.sol contract returns all contract tokens of each type to the user. A reentrant token could call removeLiquidity() from an
attacker address before all the tokens have been transferred to the user and receive some of the users tokens.

Proof of concept

A reentrant token could cause the for loop at IncurDebt.sol L127-L135 to be paused before all assets are transferred to the user and run
again for the attacker's address. The tokens intended for the user would be transferred to the attacker.

(uint256 amountA, uint256 amountB) = router.removeLiquidity(

 tokenA,
 tokenB,
 liquidity,
 (amountAMin * slippage) / 1000,
 (amountBMin * slippage) / 1000,
 address(this),
 block.timestamp
);

 if (tokenA == ohmAddress) {
 ohmRecieved = amountA;
 IERC20(tokenA).safeTransfer(incurDebtAddress, amountA);
 IERC20(tokenB).safeTransfer(_user, amountB);
 } else {
 ohmRecieved = amountB;
 IERC20(tokenB).safeTransfer(incurDebtAddress, amountB);
 IERC20(tokenA).safeTransfer(_user, amountA);
 }

https://github.com/OlympusDAO/olympus-contracts/blob/a936c45564692428e766727f0cae4035c02fe162/contracts/peripheral/Strategies/UniSwap.sol#L86

Impact

Low. Theft of funds is possible, but it would require the user to include the attacker's token as one of the tokens added to the balancer pool.

Recommendation

Make removeLiquidity() non-reentrant or calculate the correct balance to send the user.

Developer Response

Fixed

Gas Savings Findings

1. Gas Savings - Duplicative checks of isBorrower (NibblerExpress)

In IncurDebt.sol, seize checks isBorrower and immediate calls _repay , which also checks isBorrower .

Proof of concept

seize check:

_repay check:

Impact

Gas savings.

Recommendation

Remove check of isBorrower from seize . (Note that forceRepay , repayDebtWithCollateral , and
repayDebtWithCollateralAndWithdrawTheRest all rely on _repay to check isBorrower .)

Developer Response

Fixed

2. Gas Savings - Rely on checked math (NibblerExpress)

In IncurDebt.sol, removeLP checks whether the user is taking out too much liquidity and then immediately does a math calculation that will
revert if the user is taking out too much liquidity.

Proof of concept

L324-L327 say,

L359-L364 say,

 for (uint256 i = 0; i < assets.length; i++) {
 if (assets[i] == ohmAddress) {
 ohmRecieved = IERC20(ohmAddress).balanceOf(address(this));
 IERC20(ohmAddress).safeTransfer(incurDebtAddress, ohmRecieved);
 } else {
 uint256 balance = IERC20(assets[i]).balanceOf(address(this));
 IERC20(assets[i]).safeTransfer(_user, balance);
 }
 }

 function seize(address _borrower) external override onlyGovernor isBorrower(_borrower) {
 (uint256 seizedCollateral, uint256 paidDebt) = _repay(_borrower);

 function _repay(address _borrower)
 internal
 isBorrower(_borrower)
 returns (uint256 collateralRemaining, uint256 paidDebt)
 {

 if (_liquidity > lpTokenOwnership[_lpToken][msg.sender])
 revert IncurDebt_AmountAboveBorrowerBalance(_liquidity);

 lpTokenOwnership[_lpToken][msg.sender] -= _liquidity;

Impact

Gas savings.

Recommendation

You could leave as is if you want the custom error message. Otherwise, the if statement and revert can be removed.

Developer Response

Fixed

3. Gas Savings - Don't check isBorrower or isLPBorrower on withdraw
(NibblerExpress)

Non-borrowers should have a balance of zero, so there is no need to check whether someone is a borrower on a withdraw or repay function.

Proof of concept

L321-L327 say,

lpTokenOwnership[_lpToken][msg.sender] should be zero for non-borrowers.

This is also true for:
withdrawLP - L356
withdraw - L374
repayDebtWithOHM - L429
_repay - L479

Impact

Gas savings.

Recommendation

You could leave as is if you want the custom error message. Otherwise, remove the isBorrower and isLpBorrower checks.

Developer Response

Acknowledged, unchanged as an extra layer of security.

Informational Findings

1. SPDX license identifiers not provided in source files of IncurDebt.sol and other
similar library contracts (IStrategy.sol, etc.) (Peep)

Proof of concept

Compiling the contracts produce such a warning.

Impact

Please see https://spdx.org for more information.

Recommendation

Consider adding in license such as

 if (_liquidity > lpTokenOwnership[_lpToken][msg.sender])
 revert IncurDebt_AmountAboveBorrowerBalance(_liquidity);

 if (borrowers[msg.sender].debt != 0) repayDebtWithCollateral();

 lpTokenOwnership[_lpToken][msg.sender] -= _liquidity;

 Borrower storage borrower = borrowers[msg.sender];
 if (!borrower.isLpBorrower) revert IncurDebt_NotBorrower(msg.sender);

 if (_liquidity > lpTokenOwnership[_lpToken][msg.sender])
 revert IncurDebt_AmountAboveBorrowerBalance(_liquidity);

 lpTokenOwnership[_lpToken][msg.sender] -= _liquidity;

// SPDX-License-Identifier: MIT

https://spdx.org/

Developer Response

2. Addresses yet to be hardcoded (no zero checks) on constructor (Peep)

Proof of concept

Addresses in IncurDebt.sol L102-L114 are not hardcoded, without zero checks.

This is just a warning that error is possible on deployment.

Impact

Incorrect deployment may lead to gas burn / necessity for redeploy.

Recommendation

Consider hardcoding addresses as seen here (easier), or implementing zero checks on addresses to control for deploy errors.

Developer Response

Fixed

3. Informational - Typos (Peep, NibblerExpress)

(Persistent) Typo on revert error for input amount 0 of withdraw . Many occurrences of OhmRecieved - should be OhmReceived . Comment
includes "debit" instead of "debt."

Proof of concept

L375 in IncurDebt.sol says,

should be

L314-L344 use ohmRecieved . For example,

L475-L477 use "debit" when they appear to mean "debt."

Impact

May cause additional edits in the future with correct spelling to cause errors.

 constructor(
 address _OHM,
 address _gOHM,
 address _sOHM,
 address _staking,
 address _treasury,
 address _olympusAuthority
) OlympusAccessControlledV2(IOlympusAuthority(_olympusAuthority)) {
 OHM = _OHM;
 gOHM = _gOHM;
 sOHM = _sOHM;
 staking = _staking;
 treasury = _treasury;

if (_amount == 0) revert IncurDebt_InvaildNumber(_amount);

if (_amount == 0) revert IncurDebt_InvalidNumber(_amount);

 function removeLP(
 uint256 _liquidity,
 address _strategy,
 address _lpToken,
 bytes calldata _strategyParams
) external isStrategyApproved(_strategy) returns (uint256 ohmRecieved) {

 /// @notice pays borrower debit and return left collateral and paid debt
 /// @param _borrower the account debit needs to be paid
 /// @return collateralRemaining left collateral after paying debit

Recommendation

Fix spelling errors across all occurrences.

Developer Response

Fixed

4. No pragma declaration on ICurvePoolFactory.sol (Peep)

Proof of concept

starts with no pragma declaration

Impact

Leads to revert on deployment

Recommendation

Add compiler version via a pragma declaration

Developer Response

5. Informational - Strategies must check _lpToken (NibblerExpress)

IncurDebt.sol does not check whether the _lpToken matches _strategy and _strategyParams . The strategies are relied on to do this
check. If not checked, users can pass _lpToken for one pool and remove liquidity for another.

Proof of concept

In IncurDebt.sol L324-L325, The liquidity check will be wrong if the user passes a value for _lpToken that doesn't match the actual pool they
are removing funds from.

Impact

Informational. The reviewed strategies either check that _lpToken matches the actual information from _strategyParams or use _lpToken
directly to access the pool.

Recommendation

Ensure all future whitelisted strategies are using or checking _lpToken .

Developer Response

Intentional design

6. Informational - Comments don't match code (NibblerExpress, Peep)

Some comments include requirements that are not checked in the code.

Proof of concept

L137 - The comment says, "- must be greater than or equal to existing debt." This is not checked.

IncurDebt.sol L166 - The comment says "- user must not be borrower" but the function only checks if the user is already an LP borrower, not
both types of borrower.

interface ICurvePoolFactory {

 if (_liquidity > lpTokenOwnership[_lpToken][msg.sender])
 revert IncurDebt_AmountAboveBorrowerBalance(_liquidity);

 /// @notice sets the maximum debt limit for the system
 /// - onlyOwner (or governance)
 /// - must be greater than or equal to existing debt
 /// @param _limit in OHM
 function setGlobalDebtLimit(uint256 _limit) external override onlyGovernor {
 globalDebtLimit = _limit;
 emit GlobalLimitChanged(_limit);
 }

IncurDebt.sol L182 - The comment says, "- limit must be less than or equal to the global debt limit." This is not checked, but something similar
is checked at L461.

Impact

Informational. The comments are inconsistent with the code, but the code should still work properly.

Recommendation

Revise the comments or the code for consistency.

Developer Response

Fixed

7. Informational - Unwrap only required amount (NibblerExpress)

In IncurDebt.sol, _borrow unwraps all wrapped GOHM rather than just what is needed.

Proof of concept

L465-L467 of IncurDebt.sol say,

They could instead say,

Impact

Informational. In some cases, the contract can avoid wrapping sOHM during withdrawal by not unwrapping unneeded amounts during
borrowing.

Recommendation

Revise the code as proposed.

Developer Response

Fixed

 function allowNonLPBorrower(address _borrower) external override onlyGovernor {
 if (borrowers[_borrower].isLpBorrower) revert IncurDebt_AlreadyBorrower(_borrower); //@audit add addit
revert for nonlpborrowers?

 borrowers[_borrower].isNonLpBorrower = true;

 emit BorrowerAllowed(_borrower, false, true);
 }

 /// @notice sets the maximum debt limit for a borrower
 /// - onlyOwner (or governance)
 /// - limit must be greater than or equal to borrower's outstanding debt
 /// - limit must be less than or equal to the global debt limit
 /// @param _borrower the address that will interact with contract
 /// @param _limit borrower's debt limit in OHM
 function setBorrowerDebtLimit(address _borrower, uint256 _limit)
 external
 override
 onlyGovernor
 isBorrower(_borrower)
 {
 if (_limit < borrowers[_borrower].debt) revert IncurDebt_AboveBorrowersDebtLimit(_limit);

 borrowers[_borrower].limit = uint128(_limit);
 emit BorrowerDebtLimitSet(_borrower, _limit);
 }

 if (totalDebtInGOHM > borrower.unwrappedGOHM) {
 uint128 amountToUnwrap = borrower.collateralInGOHM - borrower.unwrappedGOHM;

 if (totalDebtInGOHM > borrower.unwrappedGOHM) {
 uint128 amountToUnwrap = totalDebtInGOHM - borrower.unwrappedGOHM;

8. Informational - Replace magic numbers (NibblerExpress)

Uniswap.sol and Balancer.sol use magic numbers. The numbers should be replaced with constants to prevent errors and add a description of
what the number does.

Proof of concept

Examples include the number 1000 in L86-L95 and L148-L156 of Uniswap.sol

Additional examples including "1" for the join and exit kinds at L80 and L113 of Balancer.sol.

Impact

Informational. Changes will improve readability and prevent errors in forks or future revisions.

Recommendation

Replace magic numbers with constants.

Developer Response

Fixed

9. Informational - Confusing use of slippage (NibblerExpress)

Uniswap.sol receives a minimum amount from the user and a slippage. It then multiplies them together, so the actual minimum is less than
the nominal minimum by the slippage amount. This may be confusing for users depending on how this is exposed to them.

Proof of concept

Examples include the amountAMin and amountBMin by slippage in L86-L95 and L148-L156 of Uniswap.sol

 (amountA, amountB, liquidity) = router.addLiquidity(
 tokenA,
 tokenB,
 amountADesired,
 amountBDesired,
 (amountAMin * slippage) / 1000,
 (amountBMin * slippage) / 1000,
 incurDebtAddress,
 block.timestamp
);

 (uint256 amountA, uint256 amountB) = router.removeLiquidity(
 tokenA,
 tokenB,
 liquidity,
 (amountAMin * slippage) / 1000,
 (amountBMin * slippage) / 1000,
 address(this),
 block.timestamp
);

 bytes memory userData = abi.encode(1, maxAmountsIn, minimumBPT);

 bytes memory userData = abi.encode(1, _liquidity);

 (amountA, amountB, liquidity) = router.addLiquidity(
 tokenA,
 tokenB,
 amountADesired,
 amountBDesired,
 (amountAMin * slippage) / 1000,
 (amountBMin * slippage) / 1000,
 incurDebtAddress,
 block.timestamp
);

Impact

Informational. Changes will make it more likely the front end or future contracts will be implemented correctly.

Recommendation

Multiply amountADesired and amountBDesired by slippage or just compute amountAMin and amountBMin on the front end based on the
slippage.

Developer Response

Fixed

10. Informational - No sweep function (NibblerExpress)

IncurDebt.sol and the strategies do not have any sweep functions, so additional rewards or air drops cannot be removed from the contracts.

Proof of concept

The following contracts do not have sweep functions:
IncurDebt.sol
UniSwap.sol
Curve.sol
Balancer.sol

Impact

Informational. Unexpected rewards and air drops cannot be removed.

Recommendation

Include a sweep function in each contract, and have a blacklist that prohibits sweeping of OHM, sOHM, gOHM, all lpTokens added, and all
tokens received from users for deposit into a vault.

Developer Response

Fixed

Final remarks
NibblerExpress: The contract was well written. There were few logical errors. The accounting will need to be corrected to ensure that liabilities
do not grow beyond assets. The strategies take separate parameters from IncurDebt.sol and transfer arbitrary tokens. The initial strategies
present a large attack surface but seem mostly safe. Future strategies should be carefully reviewed to ensure attacks are not possible.

Peep: Very well written contract with seemingly little issues. A patch regarding fixing most of these findings was published shortly after
publishing the first draft of our findings, in which we did not find any additional vulnerabilities upon review.

Appendix and FAQ
tags: Review yAcademy

 (uint256 amountA, uint256 amountB) = router.removeLiquidity(
 tokenA,
 tokenB,
 liquidity,
 (amountAMin * slippage) / 1000,
 (amountBMin * slippage) / 1000,
 address(this),
 block.timestamp
);

https://github.com/OlympusDAO/olympus-contracts/pull/320/files

	yAcademy Ohm IncurDebt review
	Table of Contents
	Review Summary
	Scope
	Code Evaluation Matrix
	Findings Explanation
	Critical Findings
	1. Critical - Changes to index causes contract to have insufficient funds (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	High Findings
	1. High - Balance integer overflow revert at large balances (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	Medium Findings
	1. Medium - Typo in amount transferred from user (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	2. Medium - Overflow revert on depositing an amount greater than debt amount (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	Low Findings
	1. Low - No check for _amount > type(uint128).max (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	2. Low - Fee on transfer tokens can get stuck (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	3. Low - Reentrant token can take tokens returned to user by Balancer (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	Gas Savings Findings
	1. Gas Savings - Duplicative checks of isBorrower (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	2. Gas Savings - Rely on checked math (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	3. Gas Savings - Don't check isBorrower or isLPBorrower on withdraw (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	Informational Findings
	1. SPDX license identifiers not provided in source files of IncurDebt.sol and other similar library contracts (IStrategy.sol, etc.) (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	2. Addresses yet to be hardcoded (no zero checks) on constructor (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	3. Informational - Typos (Peep, NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	4. No pragma declaration on ICurvePoolFactory.sol (Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	5. Informational - Strategies must check _lpToken (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	6. Informational - Comments don't match code (NibblerExpress, Peep)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	7. Informational - Unwrap only required amount (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	8. Informational - Replace magic numbers (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	9. Informational - Confusing use of slippage (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	10. Informational - No sweep function (NibblerExpress)
	Proof of concept
	Impact
	Recommendation
	Developer Response

	Final remarks
	Appendix and FAQ
	tags: Review yAcademy

